Forged Powdered Metal "I Beam" Connecting Rods vs Aftermarket 4340 Connecting Rods

Bob Dutton

New Member
Grumpy, would be interested in your opinion on the GM LSX376 B51 Long Block Forged Powdered Metal "I Beam" Connecting Rods. I have read about Howard's Powdered metal "I Beam" SBC Rods on his website and was impressed with what was said about them (Ranked in strength by Howard's as between a 4340 and 300M Rod). I have also looked at a couple of You Tube successful Engine Dyno sessions on the GM LSX376 B15 long block being run at around 1,070 FWHP at 22 to 24 lbs of boost pressure (depending on the Cam used) at about 6,600 RPMs, with a 4.0L Whipple, and with these GM Forged Powdered Metal Rods used in these Motors.

Grumpy - Thank you in advance for your valuable contribution to the general knowledge base that you have created for the benefit of the Motor Sports Community.
 

Grumpy

The Grumpy Grease Monkey mechanical engineer.
Staff member
short answer, from what Ive seen, powdered metal rods were designed to provide a cheaper,
and faster to manufacture and more consistently sized connecting rod,they are very strong but not rebuildable, and I don,t know many serious racers that use them by preference, but its the ROD BOLTS not the rods that tend to stretch and fail so ID STRONGLY SUGGEST 7/16" ARP ROD BOLTS BE USED.
rod bolts are the weak link in most rods, as they are under the most stress and tension, on the exhaust stroke where they play crack the wipe with the piston as theres little compression to offset the piston inertial loads

those powder metal connecting rods, that the major manufacturers use were designed so they could use them to provide the component they required at a competitive cost.
THE engineers who designed them obviously added a significant strength safety margin into the design, but the powder metal connecting rods, were never designed to be the best possible performance option, and the better aftermarket rods do have a strength advantage!
PRECISION,MACHINING TAKES TIME AND COSTS MONEY,
in MOST cases they are NOT as strong as a properly designed and machined after marker 4340 forged connecting rod, thats been designed to run at the stress levels many racers will subject them too.
you will surely find places stating the new powdered metal,connecting rods, are stronger than the older chevy SBC PINK RODS,

well thats not saying very much that old PINK RODS at least 40 year old technology, and no one I know would still use those on a serious engine build.
IF you do some careful shopping you'll find that decent connecting rods are available at semi reasonable prices, I would insist on 7/16" ARP rod bolts and 4340 forged steel, and suggest SCAT, as a lower cost but good value connecting rod source







related threads worth reading
http://garage.grumpysperformance.com/index.php?threads/what-con-rods-would-you-buy.942/#post-66820

http://garage.grumpysperformance.com/index.php?threads/connecting-rod-weights.3540/#post-9394

http://garage.grumpysperformance.com/index.php?threads/resizing-connecting-rods.16415/

http://garage.grumpysperformance.com/index.php?threads/rod-bolts-rpm-vs-stress.341/

http://garage.grumpysperformance.co...d-strength-h-vs-i-beam.1168/page-2#post-55243
 
Last edited:

Grumpy

The Grumpy Grease Monkey mechanical engineer.
Staff member
Larry Carley,AUTHOR
Choosing a set of connecting rods for a performance engine is not as simple as it sounds. The rods you ultimately choose to use in an engine will depend on a number of factors, each of which can be critical to the life of the motor and the success of your customer.
Your decision will be shaped by:
• The type of engine you are building (drag, circle track, street, endurance, diesel or marine);
• If rod selection is limited by rules (which is often the case in many circle track classes);
• The desired torque and horsepower curves the engine will produce (are you building a low rpm, long stroke, large displacement torque motor, or a high revving, peak horsepower motot
• The maximum rpms it will turn;
• The physical dimensions of the engine itself (stroke, rod ratio, piston height, deck height, standard block or tall block, crankshaft journal diameter and wrist pin size);
• The relative importance of weight, strength and reliability;
• The type of rods you or your customer want, or the style of rods that are available to fit the engine you are building (I-Beam, H-Beam, A-Beam or other variants);
• The type of rod material you or your customer want, or is available to fit the engine you are building (4340 or 300M forged or billet steel, aluminum, powder metal or titanium)
• You or your customer’s brand preference (which includes the brand’s reputation, your experience with that brand, and your relationship to the rod supplier);
• Whether you can use ready-made, off-the-shelf rods in your motor, or you need rods custom-made to your exact specifications;
• How much your customer can afford to spend on a set of rods (which often over-rides everything else!).

Every one of these factors must be considered carefully when choosing a set of rods because the rods ultimately affect engine performance, reliability and how much profit you make on the job. The rods you choose can also affect your reputation. If the rods you ultimately decide to use in a customer’s motor fail, your customer may blame you for putting the “wrong” rods in his engine.

162801jpg_00000009229.jpg
Horsepower vs. RPM

When it comes to rod selection, which is more important: horsepower or rpm? Higher power levels increase the compressive force on the connecting rods while higher rpms increase the tensile strain on the rods. As it turns out, most rods don’t bend and fail on the compression stroke but are pulled apart at high rpm and break on the exhaust stroke. Consequently, rods need additional compression strength and stiffness to handle higher horsepower loads. But in hig- revving engines, increased tensile strength is an absolute must for the rods to survive at high rpm.



The stock rods in most V8s are stout enough to handle upwards of 400 to 450 horsepower, and 5,500 to 6,500 rpm. Beyond that, reliability begins to suffer. Upgrading to stronger rods becomes increasing necessary as horsepower and/or rpms go up. Now you can start to compare the relative merits of various rod configurations and materials.



The two basic styles of connecting rods are I-Beam and H-Beam. Some rod suppliers only make I-Beams, others only make H-Beams, and some offer both types or variants of the I-Beam design. The I-Beam design is used for most stock connecting rods because it provides a good combination of light weight and strength.



An I-Beam rod can handle high compressive loads while also providing good tensile strength. But the thickness and strength of the steel in the rod limit what it can safely handle. So performance I-Beam rods are typically made of a higher grade of steel (4340 or 300M), and often have a thicker cross-section in critical areas to increase strength.



H-Beam rods have a completely different design. An H-Beam rod has two large, flat sides that are perpendicular to the piston pin and crankshaft journal, with a thin center section in the middle. This makes the H-Beam design very stiff so it can handle higher compressive loads without bending.



Which is stronger, I-Beams or H-Beams? It depends whom you ask, and the relative weights and cross-sections of the rods. I-Beams can be just as strong as H-Beams, but H-Beams can often handle higher compressive loads than I-Beams with less overall weight.



Consequently, H-Beam connecting rods are often recommended for high torque motors that produce a lot of power at low rpm (under 6,000 rpm). Some rod suppliers offer H-Beams as their “entry level” or less expensive line of performance rods, and offer I-Beams for all of their high end racing applications. Other suppliers only sell I-Beams, and some only sell H-Beams.



Quality Issues

Whether I-Beams, H-Beams or something else, the alloy used in a set of rods and the subsequent heat treatment the metal undergoes during the manufacturing process are extremely important for both strength and reliability.



Most forged and billet steel rods are made from 4340 steel. This is often referred to as an “aircraft” grade alloy because of its superior strength and durability. Steel that meets American Iron and Steel Institute (AISI) 4340 standards contains 1.65 to 2.0% nickel, 0.70 to 0.90% Chromium, 0.60 to 0.80% manganese, 0.20 to 0.35% silicon, and 0.20 to 0.30% molybdenum. The addition of these elements to the steel give it hardness, toughness, ductility and fatigue resistance.



The ultimate tensile strength, yield strength and hardness of 4340 steel also depends on the temperature at which the steel is forged into a connecting rod blank or billet, and how the steel is heat treated. Variations in the tempering temperature and quenching procedure can produce widely different results, with tensile strength, yield strength and even hardness varying as much as 2X!



Many rod suppliers are making steel connecting rods out of 300M alloy. This alloy has a higher level of silicon (1.45 to 1.80%) and a little more carbon and molybdenum for added strength. This allows the thickness and cross-sectional area of the rod to be reduced so the rod can be 10 to 20% lighter than a comparable rod made of 4340 steel.



One of the biggest issues facing both rod suppliers and engine builders today is steel quality. Those who still use domestic-made forgings say some of the offshore product identified as 4340 steel does not meet AISI 4340 standards. Said one disgruntled rod supplier, “They do not meet specifications and they do not hold up in high horsepower or high rpm applications.”



When steel is produced from recycled scrap, it’s not as easy to control the makeup of the alloy that pours out of the furnace. This concern regarding overseas manufacturing has become a hot button of debate, and while it is certainly inaccurate to label ALL foreign-made product as inferior, rod suppliers who are concerned about the quality of their products are testing the forgings to make sure the steel meets specifications. Those who don’t test their forgings may be taking a big chance, say suppliers.



In recent years, the U.S. aftermarket has been flooded with dirt-cheap connecting rods. Many of these are H-Beam style rods, which are either raw forgings (that are final machined here) or fully finished rods. According to several rod manufacturers we interviewed for this article, rods from China or India reportedly may cost as little as $10 apiece when purchased in bulk quantities – which is far less than what forgings made in the USA cost. This creates a huge profit opportunity for distributors and rod suppliers who can resell them to end-users for $600 to $800 a set.



To make matters worse, there has also been a reported epidemic of knock-off products being sold as brand name connecting rods. One manufacturer of high-end connecting rods said, “Probably 60% of the rods you see listed for sale on eBay are not our rods. Unless the rods come in our box and have our name on them, they are not our rods. If the price is unusually cheap, there’s a reason why. We get three or four calls a day from people who have bought these phony rods and have had problems with them. It’s tarnishing our reputation as a supplier of quality products.”



Aluminum, Steel or ???

Aluminum is a good material for connecting rods because of its lightweight. Reducing the weight of the rods reduces the mass of the rotating and reciprocating parts and allows the engine to rev faster and rev higher. In addition to good throttle response, aluminum’s lighter weight can reduce vibration and stress on the crankshaft. Lighter rods also allow the use of heavier, stronger pistons.



Almost all Top Fuel dragsters and funny cars use aluminum rods in their motors. So do many ProStock racers. But aluminum rods can have a limited service life depending on how they are used. The rods can stretch, and may fatigue and fail after they’ve been subjected to one too many runs down the strip. Top fuel race teams tear down their engines between every race, and typically replace their rods after 8 to 10 runs. ProStock racers may replace the rods after 20 or 30 runs. In the lower drag racing classes, a set of aluminum rods may last 100 to 200 runs or longer. It all depends on the load, the rpm, and the quality of the rods used.



But the average racer may not be able to afford a new set of rods so often, even if they cost less than steel rods. Many racers want their rods to last as long as possible, so for this type of customer steel rods are probably the most economical choice. A set of quality steel rods will cost more than a set of aluminum rods up front (say $900 to $1,600 depending on the brand and quality, though some sell for as little as $500 to $600 a set). But the longer life of the steel rods will more than offset the cost difference over the long run. Because of this, some ProStock racers who have been using aluminum rods have switched back to steel rods.



Aluminum rods are not used much in circle track engines because of rule restrictions, although light rods are a plus in engines like sprint cars that are constantly on and off the throttle.



On the street, old myths about aluminum rods are slow to die. Some say aluminum rods won’t last and must be replaced after 15,000 to 20,000 miles if they are used on the street. However, makers of aluminum rods say a set of high grade forged aluminum rods can last upwards of 100,000 miles in a street application. It all gets back to cost and weight. If a customer wants throttle response, or has a high revving engine, light rods of either aluminum or steel would be a good choice. But for a high torque, high load motor with a limited rpm range, steel rods would probably be better.



Titanium rods are another option for racers who want an extra edge. Titanium is both lightweight and strong. A titanium rod weighs about 22 to 24 percent less than a steel rod of comparable strength, and has approximately the same durability. Titanium rods are a good choice for applications that need quick throttle response like sprint cars, road racers and also drag racers. But due to a surge in the worldwide demand for titanium, the price of the metal has skyrocketed beyond the reach of many racers. One supplier of custom-made titanium rods said titanium rods typically cost $425 to $450 each, or about two to two and a half times as much as a set of quality steel rods.



Powder metal rods are used as original equipment in many late model engines because they can be manufactured at less cost than steel rods. Metal powder is pressed into a mold and heated to high temperature to melt the powder into a solid mass (a process called sintering). The result is a near-perfect rod that requires minimal machining to finish. The caps are usually cracked, which saves time and additional machining. Powder metal aftermarket rods are also available for certain engines, and are a good upgrade over stock rods. But for high horsepower or high rpm applications, steel, aluminum or titanium rods are usually preferred.

Rod Mods

Most high dollar steel performance rods are often shot peened and/or cryogenically treated (frozen to minus 300 degrees F in a nitrogen bath) to alter the metallurgy of the grain structure, and to relieve internal stresses for better durability. Magnetic particle inspecting and/or sonic testing are additional steps that many rod manufacturers perform to ensure their rods are perfect before they go in the box. Quality manufacturers will also match rod weights (big end and small end) as closely as possible to make engine balancing easier.



Some rod manufacturers analyze their rod designs with Finite Element Analysis (FEA) software that shows where the rods are weakest and strongest when they are under a simulated load. This allows critical areas to be beefed up for added strength, and metal to be removed from less critical areas to reduce overall weight. CNC machining allows for precise metal removal. Thus, a well-designed rod can be both stronger and lighter than the stock rod it replaces.



With or without pin bushings is another decision to consider. A growing number of performance engine builders are opting to use rods that do not have bushings for the wrist pins. This leaves more metal around the wrist pin for added high rpm strength because the small end of the rod does not have to be drilled out to accept a bushing. To make this work, however, the pin hole must be highly polished to a smooth finish, and the wrist pin must be coated with Casadium or a similar hard coating to prevent it from galling. One of the tradeoffs of going this route is that it makes rebuilding the rod harder if the engine chews up a pin. There’s no bushing to replace so the small end has to be drilled out to accept a larger diameter pin, which means replacing the pistons, or drilling out the pin holes in the pistons to accept a larger (a probably heavier) pin.



Smaller and smaller diameter pins also seem to be more popular as a weight saving trick. One rod manufacturer said they are now making custom rods for pins as small as 0.787? in diameter.



Some rod manufacturers offer rods with a special oil-shedding coating to reduce windage at high rpm. Others say their rods don’t really need any coatings. But if you want some type of special coating, there are plenty of people who can apply almost anything you want.

Rod Ratios

Rod ratio is the length of a connecting rod (center to center) divided by the stroke of the crankshaft. The range in engines today may be from 1.5 to 2.1, but most performance engine builders are going with ratios in the 1.57 to 1.67 range. Some say that going with a rod ratio over 1.7 makes engine torque too “peaky.” Lower rod ratio numbers are typically associated with lower rpm torque motors (a 383 Chevy street motor with a stroker crank and a rod ratio of 1.52, for example), while higher rod ratio numbers tend to be high revving high horsepower motors (a 302 high revving Chevy with a rod ratio of 1.9).



Racers have long believed that longer rods provide better crankshaft geometry and allow the piston to dwell longer at top dead center on the compression stroke. This causes pressure to build a little longer in the combustion chamber before the piston starts to move down on its power stroke. The result is a little more power squeezed out of the air/fuel mixture, and a slightly flatter and broader torque curve.



But this thinking is changing. Breathing also contributes to how much power an engine makes. A longer rod that causes the piston to sit a few degrees longer at TDC on the compression stroke also does the same thing on the exhaust stroke – and that may actually cost you some power.



The longer the piston sits at TDC on the exhaust stroke, the longer it takes to start moving down on the intake stroke to pull air and fuel into the combustion chamber. There are a lot of factors involved here, including the size and shape of the intake and exhaust valves and ports (which affect air velocity), how much overlap there is in the valve timing between the closing of the exhaust valve and the opening of the intake valve (which affects scavenging), and the design of the combustion chamber and the top of the piston (which affect airflow dynamics).



Top engine builders are always experimenting to find the ultimate combination that produces the most power and torque in the rpm range where they want it. There is no pat formula for rod ratios that work in every engine or every application. Many of today’s aftermarket performance heads flow tremendous amounts of air, so finding the right rod ratio for a given engine/head/cam combination is a trial-and-error process that separates the winners from the also-rans.

Off-The-Shelf or Custom-Made?

Many rod suppliers offer standard rod lengths for the most common engine applications, as well as rods in various incremental lengths (say 5.4? to 6.7?) that are within the range of their forgings. Six-inch rods are one of the more popular lengths these days for small block Chevys, and 6.385?, 6.535? and 6.700? for big block Chevys. These off-the-shelf rods are typically aimed at the engine builder who is not building a one-of-a-kind motor but a somewhat standardized performance motor. Off-the-shelf rods also tend to be competitively priced since many suppliers offer them.



Custom-made rods, on the other hand, are for engine builders who are doing something unique, different or special that requires one-of-a-kind parts made to their exact specifications. These rods are usually CNC machined from billet stock and cost a lot more than standard size rods because of the added time and effort it takes to produce them.



Most rod suppliers say they can usually make up a set of custom rods in a week or two, sometimes in a day or two if the rods are for a good customer. But most don’t want to do custom rods unless you order a minimum of several sets.



One application that is hot right now for custom rod manufacturers is diesels. Several rod manufacturers we interviewed said they can hardly keep up with the demand for custom rods for GM Duramax, Ford Powerstroke and Dodge Cummins diesel engines. Some of these rods can be rather pricey, costing up to $3,000 per set! But if that’s what it takes to handle the power, your customer will have to bite the bullet and come up with the cash.

Rod Bolts

One other very important thing to consider when choosing performance rods is the type of bolts that hold the cap in place. Standard bolts can stretch and fail at high rpms, so stronger is always better. Rod bolts of 8740 chrome-moly steel have a rated tensile strength of 200,000 psi. But many high rpm, high power racing engines today need ARP2000 bolts, or L19 or A625 alloy high strength bolts.



Watch out for counterfeit bolts that do not meet strength specifications due to low quality alloys or improper heat-treating. Unfortunately, it’s almost impossible to spot a counterfeit by appearance alone. You know you’ve got a bad one when it pulls apart and breaks.



Something else to watch out for is over stretching the rod bolts during engine assembly. When new rod bolts are installed and tightened down to fit bearings, using no lubricant or the wrong lubricant on the threads may damage the bolts. The next time the bolt is tightened down, the torque reading won’t be accurate and you may stretch it too far (which is a good reason to use a stretch gauge to measure rod bolt length).



So that’s all there is to it. Choosing the right connecting rods is easy – once you know what you want, what works in a particular engine and what your customer can afford.
 

Grumpy

The Grumpy Grease Monkey mechanical engineer.
Staff member
High Performance Connecting Rods - Rod Report
Jake Amatisto Jul 29, 2013
View Full Gallery
We often talk about how easy it is to make horsepower these days, giving praise to cylinder heads and camshaft technology, but if it wasn’t for tough bottom end parts, such as the modern aftermarket connecting rod (the most abused parts in a V-8 engine, next to the wristpins), none of it would be possible. It’s because of these extremely strong components that we have the option of building as much horsepower as our imaginations/wallets allow; and that’s with an array of power adders and cubic-inch options. Even “budget” con-rods can handle horsepower that was unheard of just 10 years ago, and that’s thanks to an innovative aftermarket.
stressx4.png



connecting-rod.jpg
2/20
We started looking into connecting rods for an upcoming small-block build and we realized there are quite a few options out there. From overall design, length, and processes, connecting rods these days feature some trick attributes that are in place to handle any revving, high-powered engine. Companies like Eagle Specialties, for example, started offering their products with a process that results in a gleaming finish, which they claim strengthens and helps windage. And Scat, for example, has come up with some exclusive designs too, such as their Ultra-Lite line of rods that are great for high-rpm engines. It’s innovations like these that make building a high-powered, long-lasting engine possible.

In the following pages we delve out some knowledge from the top four manufacturers of aftermarket connecting rods, covering what’s available for all levels of performance, and even show off some of the toughest connecting rods out there for those who want to make thousands of horsepower—yep, thousands.
Bushed or Pressed
Research connecting rods and you will find that there are two basic ways pistons are mounted to them. A bushed rod features a bronze bushing in the small end that the wristpin slides through, and requires Spirolocks or round wire locks to retain. When it comes to high performance, bushed rods are more common, however the companies listed in this article do offer both styles. A rod that requires a pressed pin takes a hydraulic press to install (factory pistons are typically pressed on), however these rods are for low performance and rarely get used in our high-performance world.

connecting-rod-bushings.jpg
3/20
WristPins & Retention
Here are some examples of wristpins for different applications. The pins on the left are a standard, low-carbon steel design that are typical in high-performance applications and this is what you commonly get when you order a set of high-performance pistons; however, they are different depending on application. Tapered pins, for example, are made gradually thicker toward the center of the pin; this is for high-boost and supercharged applications where tremendous cylinder pressures are forced down on the piston. The taper is to keep the weight down without sacrificing strength. You’ll notice pins also come highly polished, this adds to the strength by eliminating stress risers and imperfections in the metal. At the highest levels of racing, special low-friction coatings are used to keep the pin from galling on the piston, even in low-oil situations. The small, dark-colored pins on the left are for a NASCAR “Cup” engine from Del West and feature a DLC coating that reduces friction. In some drag race applications where massive power adders are used, such as multiple nitrous stages, some pistons are designed to use a thick, but small-diameter wristpin due to the ring package position (it’s lower to keep the top piston ring away from intense heat).



connecting-rod-wristpins.jpg
4/20
Here are a few examples of how the pistons are secured to the rods. The clip on the left is an old design that rarely gets used anymore, followed by the more common Spirolock and on the far left, the round wire lock that we see more piston companies going with today. Anyone who’s installed Spirolocks by hand knows what a treacherous feat it can be for your thumbs, so you’ll be happy to know there are tools available that make installation less painful. The round wire locks seem to be taking the place of the Spirolock, however that’s not the latest development in hanging pistons from rods. There is also a button-style retainer that is designed to be much easier to install than these three and doesn’t require tools.

connecting-rod-rings-tools.jpg
5/20
Rod Terms:

1. Big End
2. Small End
3. Pin Bore
4. Crank Bore
5. Cap
6. Rod Bolt
7. Beam

connecting-rod-diagram.jpg
6/20


Chevrolet V-8 Connecting Rod Lengths
Displacement Cubic Inches Liters Rod Length (inches)
302 4.9 5.700
305 5.0 5.700
327 5.4 5.700
350 5.7 5.700
350 (LT5) 5.7 5.700
350 (LS1) 5.7 6.098
383 6.3 6.000
400 6.6 5.565
396 6.5 6.135
402 6.6 6.135
427 7.0 6.135
454 7.4 6.135
502 8.2 6.135
377 6.2 6.135


connecting-rod-types.jpg
7/20
The two basic types of rods are I-beam and H-beam. Some say H-beams look heavier, but can end up being lighter than some I-beam designs, but not in every case. Which rod design is better is an ongoing debate, and we’re not taking sides, just showing off what’s typically offered. The designation comes from when you cut the beam: the end shapes a letter. X-beam and A-beam rods also exist, but are not common in the high-performance Chevy world.

connecting-rod-end.jpg
20/20
When building large cubic-inch small-blocks, such as 427ci and larger animals, sometimes the big end of the rod contacts the camshaft and must be clearanced meticulously. Companies like Callies, however, offer rods that have been designed with this clearance in mind.

btw I would NEVER reuse the 400 sbc 5.565 rods, they are at least 40 years old,
have been through unknown millions of stress cycles,
and are well known to be a rather weak design,
that was originally designed for a lower to mid rpm torque engine,
intended mostly for pick-up trucks and luxury cars with automatic transmissions.

5.56vs5.7.png

you can purchase 5.7" connecting rods that are
easily over twice as strong as the O.E.M. connecting rods used in a stock 400 sbc
for LESS,
than it would cost to rebuild ,resize and add ARP rod bolts to the original rods


below is only one of several dozen options if your building a performance SBC
https://www.summitracing.com/parts/sca-25700716

scat5.7r.png

scat5.7r1.png


related info
http://www.lunatipower.com/Category.aspx?id=12

http://garage.grumpysperformance.co...s-one-really-over-looked-part.978/#post-79095

http://www.scatcrankshafts.com/rods/

http://www.callies.com/compstar/connecting-rods/i-beams/
 
Last edited:

Grumpy

The Grumpy Grease Monkey mechanical engineer.
Staff member
A002_C024_1028T9.0000000.jpeg

Wiseco's New 2000hp+ capable BoostLine Connecting Rods
be aware there are counterfeit ARP bolts for sale

https://www.thecounterfeitreport.com/product/486/Bolts.html
arpcon1.png

arpcon2.png

March 8, 2017 / by Mark Gearhart

Upgrade those H-Beams! Wiseco introduces a new, revolutionary connecting rod design that is targeted towards boosted and nitrous application engines.



Introducing BoostLine Connecting Rods by Wiseco Performance Products! Our engineering team created this new, patent-pending 3-pocket design specifically for demanding turbocharged, supercharged and big nitrous applications. These connecting rods are ideal for today’s high horsepower engines and provide 60% more bending strength compared to common H-beam rods! Each rod is designed, finished and inspected in the USA and includes an inspection report from our quality team.

Bending%20Stress.png

An FEA analysis shows BoostLine rods provide an additional 60% more bending strength compared to common H-beam rods.
“The design of connecting rods hasn’t evolved much over the years,” says Nick DiBlasi, Global Automotive Product Manager for Wiseco. “The BoostLine connecting rods is a scratch design that takes the best attributes of an H- and I-beam rod and merges them into one. Even though the BoostLine rod is designed for heavy duty use, we were able to keep the rod relatively light without compromising strength.”

Designed specifically for high horsepower forced induction and nitrous applications

  • 60% increase in bending strength vs. H-Beam
  • Patent Pending high strength 3-pocket design
  • Machined from premium 4340 forged steel
  • High quality ARP Bolts included
  • Inspected and finished in the USA (Mentor, Ohio)
Check out our comprehesive inspection process!





A002_C009_1028GU.0000215.jpeg


Screen%20Shot%202017-01-11%20at%2012.00.48%20PM.png


BoostLine%20Rod.jpeg
 
Last edited:
Top