Furnace Brazed Torque Converter, What's That Mean ???

Indycars

Administrator
Staff member

I've often wondered what exactly was FURNACE BRAZING. I see it all the time when reading about transmission and torque converters. I ran across this in wikipedia and figured there were others like me.



Furnace Brazing
http://en.wikipedia.org/wiki/Brazing#Furnace_brazing


Furnace brazing is a semi-automatic process used widely in industrial brazing operations due to its adaptability to mass production and use of unskilled labor. There are many advantages of furnace brazing over other heating methods that make it ideal for mass production. One main advantage is the ease with which it can produce large numbers of small parts that are easily jigged or self-locating.[10] The process also offers the benefits of a controlled heat cycle (allowing use of parts that might distort under localized heating) and no need for post braze cleaning. Common atmospheres used include: inert, reducing or vacuum atmospheres all of which protect the part from oxidation. Some other advantages include: low unit cost when used in mass production, close temperature control, and the ability to braze multiple joints at once. Furnaces are typically heated using either electric, gas or oil depending on the type of furnace and application. However, some of the disadvantages of this method include: high capital equipment cost, more difficult design considerations and high power consumption.[10]



There are four main types of furnaces used in brazing operations: batch type; continuous; retort with controlled atmosphere; and vacuum.

Batch type furnaces have relatively low initial equipment costs and heat each part load separately. It is capable of being turned on and off at will which reduces operating expenses when not in use. These furnaces are well suited to medium to large volume production and offer a large degree of flexibility in type of parts that can be brazed.[10] Either controlled atmospheres or flux can be used to control oxidation and cleanliness of parts.

Continuous type furnaces are best suited to a steady flow of similar-sized parts through the furnace.[10] These furnaces are often conveyor fed, allowing parts to be moved through the hot zone at a controlled speed. It is common to use either controlled atmosphere or pre-applied flux in continuous furnaces. In particular, these furnaces offer the benefit of very low manual labor requirements and so are best suited to large scale production operations.



Retort-type furnaces differ from other batch-type furnaces in that they make use of a sealed lining called a "retort". The retort is generally sealed with either a gasket or is welded shut and filled completely with the desired atmosphere and then heated externally by conventional heating elements.[10] Due to the high temperatures involved, the retort is usually made of heat resistant alloys that resist oxidation. Retort furnaces are often either used in a batch or semi-continuous versions.

Vacuum furnaces is a relatively economical method of oxide prevention and is most often used to braze materials with very stable oxides (aluminum, titanium and zirconium) that cannot be brazed in atmosphere furnaces. Vacuum brazing is also used heavily with refractory materials and other exotic alloy combinations unsuited to atmosphere furnaces. Due to the absence of flux or a reducing atmosphere, the part cleanliness is critical when brazing in a vacuum. The three main types of vacuum furnace are: single-wall hot retort, double-walled hot retort, and cold-wall retort. Typical vacuum levels for brazing range from pressures of 1.3 to 0.13 pascals (10−2 to 10−3 Torr) to 0.00013 Pa (10−6 Torr) or lower.[10] Vacuum furnaces are most commonly batch-type, and they are suited to medium and high production volumes.


 

Attachments

  • Furnace_Brazing.png
    Furnace_Brazing.png
    6.1 KB · Views: 62
  • FurnaceBrazedTorqueConverter.JPG
    FurnaceBrazedTorqueConverter.JPG
    64.5 KB · Views: 62
Back
Top